СТЕРЛИТАМАКСКИЙ ФИЛИАЛ ФЕДЕРАЛЬНОГО ГОСУДАРСТВЕННОГО БЮДЖЕТНОГО ОБРАЗОВАТЕЛЬНОГО УЧРЕЖДЕНИЯ ВЫСШЕГО ОБРАЗОВАНИЯ «БАШКИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Факультет	Естественнонаучный	
Кафедра	Общей и теоретической физики	
1 '1		
	Оценочные материалы по дисциплине (модулю)	
дисциплина	Физика	
диодинини		
	Блок Б1, вариативная часть, Б1.В.03	
цикл ді	сциплины и его часть (базовая, вариативная, дисциплина по выбору)	
	Направление	
	I	
20.02.01	T 6	
20.03.01	Техносферная безопасность	
код	наименование направления	
	Программа	
	Пожарная безопасность	
	11000cup max vesomuenvemv	
	Форма обучения	
	Заочная	
	Javanian	
	Для поступивших на обучение в	
	2020 г.	
Разработчик (состан		
старший препода	атель	
Филиппов И.		
ученая степень, должно		
,, , , , , , , , , , , , , , , ,		

1. Перечень компетенций с указанием этапов их формирования и описание	
показателей и критериев оценивания компетенций на различных этапах их	_
формирования, описание шкал оценивания	3
2. Контрольные задания или иные материалы, необходимые для оценки знаний,	
умений, навыков и (или) опыта деятельности, характеризующих этапы	
формирования компетенций в процессе освоения образовательной программы	6
3. Методические материалы, определяющие процедуры оценивания знаний, умені	ий,
навыков и (или) опыта деятельности, характеризующих этапы формирования	
компетенций	12

1. Перечень компетенций с указанием этапов их формирования и описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

Формируемая компетенция (с указанием кода)	Результаты обучения по дисциплине (модулю)	Показатели и критерии оценивания результатов обучения по дисциплине (модулю)					
1	2		4				
		неуд.	удовл.	хорошо	отлично		
Способностью	1 этап:	Обучающийся не	Обучающийся слабо	Обучающийся	Обучающийся знает	Коллоквиум	
определять	Знания	знает способы	знает способы	посредственно знает	способы снижения		
нормативные		снижения	снижения	способы снижения	индивидуальных,		
уровни		индивидуальных,	индивидуальных,	индивидуальных,	коллективных и		
допустимых		коллективных и	коллективных и	коллективных и	глобальных рисков,		
негативных		глобальных рисков,	глобальных рисков,	глобальных рисков,	выработки		
воздействий на		выработки морально-	выработки	выработки	морально-		
человека и		психологической	морально-	морально-	психологической		
окружающую		устойчивости в	психологической	психологической	устойчивости в		
среду (ПК-14)		условиях опасных и	устойчивости в	устойчивости в	условиях опасных и		
		чрезвычайных	условиях опасных и	условиях опасных и	чрезвычайных		
		ситуаций;	чрезвычайных	чрезвычайных	ситуаций;		
	_		ситуаций;	ситуаций;			
	2 этап:	Обучающийся не	Обучающийся слабо	Обучающийся	Обучающийся	Лабораторная	
	Умения	владеет основными	владеет основными	посредственно	владеет основными	работа.	
		методами защиты	методами защиты	владеет основными	методами защиты	Тестирование	
		производственного	производственного	методами защиты	производственного		
		персонала и	персонала и	производственного	персонала и		
		населения от	населения от	персонала и	населения от		
		возможных	возможных	населения от	ВОЗМОЖНЫХ		
		последствий аварий,	последствий аварий,	ВОЗМОЖНЫХ	последствий аварий,		
		катастроф,	катастроф,	последствий аварий,	катастроф,		
		стихийных	стихийных бедствий	катастроф,	стихийных бедствий		

		бедствий;технологии		стихийных бедствий		
	3 этап:	Обучающийся не	Обучающийся слабо	Обучающийся	Обучающийся	Решение
	Владения	умеет	умеет	посредственно	умеет	задач в
	(навыки /	идентифицировать	идентифицировать	умеет	идентифицировать	аудитории.
	опыт	негативные факторы	негативные факторы	идентифицировать	негативные факторы	Контрольная
	деятельности)	среды обитания	среды обитания	негативные факторы	среды обитания	работа.
		естественного и	естественного и	среды обитания	естественного и	
		антропогенного	антропогенного	естественного и	антропогенного	
		происхождения	происхождения	антропогенного происхождения	происхождения	
Способностью	1 этап:	Отсутствие владений	В целом успешное,	В целом успешное,	Успешное и	Лабораторная
организовать	Знания	-	НО	но содержащее	последовательное	работа.
свою работу			непоследовательное	отдельные пробелы	владение	Тестирование
ради			владение	владение	методологией	
достижения			методологией	методологией	исследования в	
поставленных			исследования в	исследования в	области физики,	
целей и			области физики,	области физики,	навыками анализа	
готовностью к			навыками анализа	навыками анализа	физических	
использованию			физических	физических	закономерностей.	
инновационных			закономерностей.	закономерностей.		
идей (ОК-6)	2 этап:	Отсутствие умений	В целом успешное,	В целом успешное,	Сформированное	Решение
	Умения		но не	но содержащее	умение	задач в
			систематическое	отдельные пробелы	анализировать	аудитории.
			умение	анализировать	информацию по	Контрольная
			анализировать	информацию по	физике из	работа.
			информацию по	физике из	различных	
			физике из	различных	источников;	
			различных	источников;	- приобретать новые	
			источников;	- приобретать новые	знания по физике,	
			- приобретать новые	знания по физике,	используя	
			знания по физике,	используя	современные	
			используя	современные	информационные и	

	T.	т				
			современные	информационные и	коммуникационные	
			информационные и	коммуникационные	технологии;	
			коммуникационные	технологии;	- применять общие	
			технологии;	- применять общие	законы физики для	
			- применять общие	законы физики для	решения	
			законы физики для	решения	профессиональных	
			решения	профессиональных	задач.	
			профессиональных	задач.		
			задач.			
3 3	этап:	Отсутствие знаний	Неполные	Сформированные,	Сформированные	Коллоквиум
Вл	ладения	-	представления об	но содержащие	систематические	
(Ha	авыки /		основных законах	отдельные пробелы	представления об	
ОП	ТЫТ		физики, границ их	представления об	основных законах	
де	еятельности)		применимости, о	основных законах	физики, границ их	
			размерностях	физики, границ их	применимости, о	
			физических	применимости, о	размерностях	
			величин, об истории	размерностях	физических	
			развития и	физических	величин, об истории	
			становления физики,	величин, об истории	развития и	
			о ее современном	развития и	становления	
			состоянии	становления	физики, о ее	
				физики, о ее	современном	
				современном	состоянии	
				состоянии		

2. Контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Перечень вопросов для оценки уровня сформированности компетенции

ОК-6 на этапе «Знания»

Вопросы к коллоквиуму по разделу «Механика»

- 1. Системы отсчета. Радиус-вектор. Векторы перемещения, скорости и ускорения.
- 2. Прямолинейное равномерное и равноускоренное движение. Закон пути при равноускоренном движении. График пути, скорости и ускорения.
- 3. Движение точки по окружности. Угловые и линейные характеристики движения. Связь между ними. Нормальное, тангенциальное и полное ускорение. Криволинейное движение.
- 4. Законы Ньютона. Инерциальные системы отсчета. Понятие о силе и массе.
- 5. Силы в природе.
- 6. Второй закон Ньютона. Третий закон Ньютона.
- 7. Импульс точки. Связь между силой и изменением импульса. Закон сохранения импульса.
- 8. Работа и мощность. Работа силы трения, силы тяжести и упругих сил. Силы консервативные и неконсервативные.

Вопросы к коллоквиуму по разделу «Термодинамика»

- 1. Внутренняя энергия. Работа и теплота в термодинамике.
- 2. Первое начало термодинамики.
- 3. Адиабатический процесс. Уравнение Пуассона.
- 4. Применение первого начала термодинамики к изопроцессам.
- 5. Уравнение теплового баланса.
- 6. Теплоемкость. Молярная и удельная теплоемкость.
- 7. Уравнение Майера. Физический смысл универсальной газовой постоянной.

Перечень вопросов для оценки уровня сформированности компетенции

ПК-14 на этапе «Знания»

Вопросы к коллоквиуму по разделу «Электричество и магнетизм»»

- 1. Электрический заряд и его свойства. Закон Кулона.
- 2. Напряженность электрического поля. Принцип суперпозиции.
- 3. Потенциал и потенциальная энергия. Эквипотенциальная поверхность. Связь напряженности и потенциала.
- 4. Электроемкость. Конденсаторы. Соединение конденсаторов.
- 5. Электрический ток. Условия существования электрического постоянного тока. ЭДС. Закон Ома.
- 6. Магнитное взаимодействие и магнитное поле. Силовые характеристики магнитного поля В и Н.

Вопросы к коллоквиуму по разделу «Оптика»

- 1. Основные понятия и законы геометрической оптики.
- 2. Отражение света.
- 3. Преломление света на плоской границе раздела.

- Линзы.
- 5. Когерентность и монохроматичность световой волны. Интерференция света. Условия тах и min интенсивности при сложении когерентных волн.

Перечень вопросов для оценки уровня сформированности компетенции

ОК-6 на этапе «Умения»

Типовые задачи для решения в аудитории по разделу «Механика»

- 1. Шарик, скатываясь с наклонного желоба из состояния покоя, за первую секунду прошел путь 10 см. Какой путь он пройдет за 3с? [Ответ: 90 см].
- 2. Две гири массами 2 и 1 кг соединены нитью, перекинутой через неподвижный блок. Найти ускорение, с которым движутся гири, силу натяжения нитей и силу давления на ось блока. Трение не учитывать. [Ответ: 3,3 м/с2].
- 3. Граната, летевшая в горизонтальном направлении со скоростью 10 м/с, разорвалась на два осколка массами 1 кг и 1,5 кг. Скорость большего осколка осталась после разрыва горизонтальной и возросла до 25 м/с. Определите скорость и направление движения меньшего осколка. [Ответ: 12,5 м/с, в обратном направлении].
- 4. По наклонной плоскости с углом наклона к горизонту =30 0, скользит тело. Определить скорость тела в конце второй секунды от начала скольжения, если коэффициент трения =0,15. [Ответ: 7,26 м/с].
- 5. Из орудия массы M=3 т, не имеющего противооткатного (ствол жестко закреплен с лафетом), вылетает в горизонтальном направлении снаряд массы m=15 кг со скоростью v=650 м/с. Какую скорость и получает орудие при отдаче? [Ответ: 3,25 м/с].

Типовые задачи контрольной работы по разделу «Молекулярная физика» Вариант 1

- 1. Латунный сосуд массы 0,2 кг содержит 0,4 кг анилина при температуре 10 0 С. В сосуд долили 0,4 кг анилина, нагретого до температуры 31 0 С. Найти удельную теплоемкость анилина, если в сосуде установилась температура 20 0 С. Удельная теплоемкость латуни 0,4 кДж/(кг К). [Ответ: 2 кДж/(кг К)].
- 2. Какое давление рабочей смеси установилось в цилиндрах двигателя внутреннего сгорания, если к концу такта сжатия температура повысилась с 47 до 367°C, а объем уменьшился с 1,8 до 0,3л? Первоначальное давление было 100 кПа. [Ответ: 1,2 МПа].
- 3. Число молекул, содержащихся в единице объема неизвестного газа при нормальных условиях, равно $2.7 \cdot 10^{25}$ м-3. Этот же газ при температуре 91° С и давлении 800 кПа имеет плотность 5.4 г/см3. Найдите массу молекулы этого газа. [Ответ: $3.3 \cdot 10-26$ кг].
- 4. В цилиндре под поршнем площадью 100 см² находится азот массой 28 кг при температуре 273К. Цилиндр нагревается до температуры 373К. На какую высоту поднимается поршень, если его масса равна 100 кг? Атмосферное давление нормальное. [Ответ: 41 см].
- 5. Рассчитайте внутреннюю энергию идеального газа в количестве 3 моль при температуре 127 °C. [Ответ: 15 кДж].
- 6. При изотермическом сжатии газ передал окружающим телам теплоту 800 Дж. Какую работу совершил газ? Какую работу совершили внешние силы? [Ответ: -800 Дж, 800Дж].
- 7. В идеальной тепловой машине за счет каждого килоджоуля энергии, получаемой от нагревателя, совершается работа 300Дж. Определите КПД машины и температуру нагревателя, если температура холодильника 280К. [Ответ: 30%, 400 K].
- 8. Какое давление на стенки сосуда производит кислород, если средняя квадратичная скорость его молекул 400м/с и число молекул в 1 см3 равно 2,7·1019? [Ответ: 76 кПа].

Перечень вопросов для оценки уровня сформированности компетенции

ПК-14 на этапе «Умения»

Типовые задачи для решения в аудитории по разделу «Электричество и магнетизм» »

- 1. Маленький шарик массой 100 мг и зарядом 16,7 нКл подвешен на нити. На какое расстояние надо поднести к нему снизу одноименный и равный ему заряд, чтобы сила натяжения нити уменьшилась вдвое?
- 2. Материальная точка с зарядом 0,67 нКл, двигаясь в ускоряющем электрическом поле, приобретает кинетическую энергию 107 эВ. Найти разность потенциалов между начальной и конечной точками траектории частицы в поле, если ее начальная кинетическая энергия равна нулю.
- 3. Медная и железная проволоки одинаковой длины включены параллельно в цепь, причем железная проволока имеет вдвое больший диаметр. По медной проволоке протекает сила тока 60 мА. Какова сила тока в железной проволоке?
- 4. Три проводника, сопротивления которых равны соответственно 3, 6 и 8 Ом, соединены параллельно. В первом проводнике выделяется 21 кДж теплоты. Определить количество теплоты, выделяющееся во втором и третьем проводниках за тоже время.

Типовые задачи контрольной работы по разделу «Оптика» Вариант 1

- 1. На какой глубине под водой находится водолаз, если он видит отраженными от поверхности воды те части горизонтального дна, которые расположены от него на расстоянии $s=15\,$ м и больше? Рост водолаза $h=1,5\,$ м. Показатель преломления воды n=1.33.
- 2. Луч падает на трехгранную призму из кварцевого стекла под углом в 36° . Преломляющий угол призмы 400. Под каким углом луч выйдет из призмы и каков его угол отклонения от первоначального направления, если n=1,54.
- 3. Выпуклое зеркало с фокусным расстоянием F=0,2 м дает мнимое изображение предмета с уменьшением. На каком расстоянии d от зеркала расположен предмет? Построить ход лучей.
- 4. Изображение миллиметрового деления шкалы, расположенной перед линзой на расстоянии d=12,5 см, имеет на экране длину L=8 см. На каком расстоянии f от линзы находится экран?
- 5. В опыте с зеркалами Френеля расстояние между мнимыми изображениями источника света 0,5 мм, расстояние до экрана 5 м. В зеленом свете получились интерференционные полосы на расстоянии 5 мм друг от друга. Найти длину волны зеленого света.
- 6. На дифракционную решетку нормально падает монохроматический свет. В спектре, полученном с помощью этой дифракционной решетки, некоторая спектральная линия наблюдается в первом порядке под углом $\varphi = 11^0$. Определите наивысший порядок спектра, в котором может наблюдаться эта линия.
- 7. Свет, проходя через жидкость, налитую в стеклянный сосуд (n=1,5), отражается от дна, причем отраженный свет плоскополяризован при падении его на дно сосуда под углом 41⁰.Определите: 1) показатель преломления жидкости; 2) угол падения света на дно сосуда, чтобы наблюдалось полное отражение.

Перечень вопросов для оценки уровня сформированности компетенции ОК-6 на этапе «Владения»

Типовые контрольные вопросы к лабораторным работам по разделу «Механика» Вводная лабораторная работа

- 1. Какие бывают измерения?
- 2. Как оценивают погрешности при прямых измерениях?
- 3. Что называют абсолютной и относительной погрешностями измерения?
- 4. В каких случаях можно ограничиваться однократным измерением и как при этом вычисляется абсолютная и относительная погрешности?
- 5. Что понимается под нониусом? Как пользоваться шкалами нониуса?
- 6. Принцип устройства штангенциркуля и микрометра

Лабораторная работа № 3

- 1. Основная задача кинематики
- 2. Что называется перемещением, траекторией? Что такое путь?
- 3. Какие движения называются равномерными и какие неравномерными?
- 4. Что называется скоростью равномерного прямолинейного движения? Единица его измерения. Что такое мгновенная скорость и каков ее физический смысл? Что такое средняя скорость?
- 5. Как подсчитывается путь при неравномерном движении?
- 6. Что называется ускорением равнопеременного движения? Единицы измерения.
- 7. Напишите закон скорости и закон пройденного пути при равнопеременном движении.
- 8. Начертите графики зависимости пути, скорости, ускорения от времени для равномерного и равнопеременногодвижения.
- 9. Объясните, как рассчитывали погрешность измерений в работе.

Лабораторная работа № 5

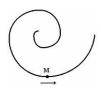
- 1. Сформулируйте законы Ньютона.
- 2. Расскажите, какие законы Ньютона Вы проверяете в лабораторной работе и как?
- 3. Выведите формулы, используемые в работе.
- 4. Каким образом в работе переходят от векторной записи 2-го закона Ньютона к скалярной?
- 5. Что понимается под инертностью тела? Единица измерения массы?
- 6. Что такое сила? Что принято за единицу силы?
- 7. В каких случаях движение тел будет равномерным? Неравномерным?
- 8. Основная задача динамики.

Перечень вопросов для оценки уровня сформированности компетенции ПК-14 на этапе «Влаления»

Типовые контрольные вопросы к лабораторным работам по разделу «Молекулярная физика»

Лабораторная работа № 4

- 1. Что такое концентрация молекул?
- 2. Запишите основное уравнение МКТ.
- 3. Почему температура имеет статистический характер?
- 4. Что такое изопроцесс?
- 5. Расскажите о газовых законах.


- 6. Изобразите графики газовых законов в координатах (P, V), (P, T), (V, T).
 - 7. Какой физический смысл имеет постоянная Больцмана?
 - 8. Каков физический смысл термического коэффициента давления
 - 9. Какова единица измерения термического коэффициента давления?
 - 10. Какими параметрами описывается состояние идеального газа?

Лабораторная работа № 7

- 1. Что такое удельная и молярная теплоемкости? Какова связь между ними?
- 2. Почему теплоемкости газов зависят от способов и условий нагревания. Почему C_p больше, чем Cv?
- 3. Что называется числом степеней свободы молекул? Чему равно число степеней свободы одноатомного, двухатомного и многоатомных газов?
- 4. Выведите формулы для определения молярных теплоемкостей при постоянном объеме и при постоянном давлении через число степеней свободы молекул?
 - 5. Запишите уравнение Майера.
 - 6. Как связана величина отношения c_p/c_v числом степеней свободы молекул?
- 7. Чему равна величина отношения c_p/c_v для двухатомных газов согласно классической теории теплоемкости?

Типовые тестовые задания

1. Точка М движется по спирали в направлении, указанном стрелкой. Нормальное ускорение по величине не изменяется. При этом величина скорости...

- а) уменьшается
- б) увеличивается
- в) не изменяется
- 2. Средняя кинетическая энергия молекулы идеального газа при температуре Т равна .
- $\varepsilon = \frac{1}{2}kT$. Здесь $i = n_n + n_{Bp} + n_k$, где n_n и n_{Bp} , n_k число степеней свободы поступательного, вращательного и колебательного движений молекулы. При условии, что имеют место только поступательное и вращательное движение, для водорода (H_2) число i равно
- a) 8
- б) 2
- в) 7
- г) 5

- 3. Шар и полый цилиндр (трубка), имеющие одинаковые массы и радиусы, скатываются без проскальзывания с горки высотой h. Тогда верным утверждением относительно скорости тел у основания горки является следующее:
- а) больше скорость полого цилиндра
- б) скорости обоих тел одинаковы
- в) больше скорость шара
- 4. Точечный заряд +q находится в центре сферической поверхности. Если добавить заряд +q внутрь сферы, то поток вектора напряженности электростатического поля через поверхность сферы...
- а) не изменится
- б) увеличится
- в) уменьшится
- 5. На рисунке изображены сечения двух параллельных прямолинейных длинных проводников с одинаково направленными токами, причем J2 больше J1 (например, J₂=2J₁). Индукция результирующего магнитного поля равна нулю в некоторой точке интервала...

- a) c
- б) а
- в) b
- г) d

Перечень вопросов к зкзамену

- 1. Механическое движение. Относительность движения. Система отсчёта. Материальная точка. Траектория. Путь и перемещение.
- 2. Скорость. Ускорение. Нормальная и тангенциальная составляющие ускорения.
- 3. Виды движения. Графики зависимости кинематических величин от времени в прямолинейном равномерном и прямолинейном равнопеременном движениях.
- 4. Динамика. Первый закон Ньютона. Инерциальная система отсчёта. Масса. Сила. Второй закон Ньютона. Сложение сил. Третий закон Ньютона.
- 5. Импульс тела. Закон сохранения импульса.
- 6. Кинетическая и потенциальная энергия. Закон сохранения энергии в механике.
- 7. Механическая работа. Мощность. Коэффициент полезного действия.
- 8. Механические колебания. Характеристики колебательного движения. Уравнение гармонических колебаний. Математический маятник. Пружинный маятник.
- 9. Основные положения МКТ. Идеальный газ. Давление газа. Средняя арифметическая и средняя квадратичная скорость молекул
- 10. Вывод основного уравнения МКТ. Уравнение Менделеева-Клапейрона. Газовые законы. Изопроцессы (графики).

- 11. Термодинамическая система. Термодинамическое равновесие. Параметры состояния. Внутренняя энергия. Работа и теплота в термодинамике. Первое начало термодинамики.
- 12. Адиабатический процесс. Уравнение Пуассона.
- 13. Применение первого начала термодинамики к изопроцессам.
- 14. Теплоемкость. Молярная и удельная теплоемкость. Уравнение Майера. Физический смысл универсальной газовой постоянной.
- 15. Обратимые и необратимые процессы. Принцип действия тепловых двигателей. КПД. Цикл Карно
- 16. ІІ начало термодинамики. Энтропия.
- 17. Свойства жидкостей. Поверхностное натяжение.
- 18. Электрический заряд и его свойства. Закон Кулона.
- 19. Напряженность электрического поля. Принцип суперпозиции
- 20. Поток вектора напряженности. Теорема Остроградского-Гаусса
- 21. Работа электрического поля по перемещению заряда. Потенциал электростатического поля. Потенциальная энергия. Эквипотенциальная поверхность. Связь напряженности и потенциала.
- 22. Электроемкость. Конденсаторы. Соединение конденсаторов.
- 23. Электрический ток. Условия существования электрического постоянного тока. ЭДС. Закон Ома. Работа и мощность постоянного тока. Закон Джоуля-Ленца.
- 24. Магнитное взаимодействие и магнитное поле. Силовые характеристики магнитного поля В и Н.
- 25. Опыты Фарадея, закон электромагнитной индукции. Правило Ленца.
- 26. Основные понятия и законы геометрической оптики.
- 27. Отражение света на плоской границе раздела. Сферические зеркала.
- 28. Преломление света на плоской границе раздела. Линзы. Преломление света на сферической границе раздела двух сред. Вывод формулы линзы.
- 29. Когерентность и монохроматичность световой волны.
- 30. Интерференция света. Условия тах и тіп интенсивности при сложении когерентных волн.
- 31. Принцип Гюйгенса-Френеля. Метод зон Френеля.
- 32. Дифракция Френеля на круглом отверстии и диске.
- 33. Дифракция Фраунгофера на одной щели. Дифракция Фраунгофера на дифракционной решетке.
- 34. Естественный и поляризованный свет. Типы поляризации.
- 35. Поляризаторы и анализаторы. Закон Малюса и Брюстера.

3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

			Баллы			
Виды учебной деятельности студентов	Балл за конкретное задание	Число заданий за семестр	Минимальны й	Максимальны й		
Модуль 1.						
Текущий контроль						
1)Аудиторная работа	5	1	0	5		
2)Выполнение домашнего	4	1	0	4		

задания				
3)Допуск, выполнение и	3	2	0	6
оформ. лаб. работы				
4) Коллоквиум	5	1	0	5
Рубежный контроль				15
1) Отчет лаб.работ	3	2	0	6
2)Контрольная работа	9	1	0	9
Модуль 2.				
Текущий контроль				20
1) Аудиторная работа	5	1	0	5
2)Выполнение домашнего	4	1	0	4
задания				
3)Допуск, выполнение и	3	2	0	6
оформ. лаб. работы				
4)Коллоквиум	5	1	0	5
Рубежный контроль	Рубежный контроль			15
1) Отчет лаб. работ	3	2	0	6
2) Тестирование	9	1	0	9
Итого				70
Поощрительные баллы			0	10
Всего за семестр			0	110
Итоговый контроль экзамен	0	30		

Результаты обучения по дисциплине (модулю) у обучающихся оцениваются по итогам текущего контроля количественной оценкой, выраженной в рейтинговых баллах. Оценке подлежит каждое контрольное мероприятие.

При оценивании сформированности компетенций применяется четырехуровневая шкала «неудовлетворительно», «удовлетворительно», «хорошо», «отлично».

Максимальный балл по каждому виду оценочного средства определяется в рейтинг-плане и выражает полное (100%) освоение компетенции.

Уровень сформированности компетенции «хорошо» устанавливается в случае, когда объем выполненных заданий соответствующего оценочного средства составляет 80-100%; «удовлетворительно» — выполнено 40-80%; «неудовлетворительно» — выполнено 0-40%

Рейтинговый балл за выполнение части или полного объема заданий соответствующего оценочного средства выставляется по формуле:

Рейтинговый балл = k × Максимальный балл,

где k=0,2 при уровне освоения «неудовлетворительно», k=0,4 при уровне освоения «удовлетворительно», k=0,8 при уровне освоения «хорошо» и k=1 при уровне освоения «отлично».

Оценка на этапе промежуточной аттестации выставляется согласно Положению о модульно-рейтинговой системе обучения и оценки успеваемости студентов БашГУ: На экзамене выставляется оценка:

- отлично при накоплении от 80 до 110 рейтинговых баллов (включая 10 поощрительных баллов),
- хорошо при накоплении от 60 до 79 рейтинговых баллов,
- удовлетворительно при накоплении от 45 до 59 рейтинговых баллов,
- неудовлетворительно при накоплении менее 45 рейтинговых баллов.

При получении на экзамене оценок «отлично», «хорошо», «удовлетворительно», на зачёте оценки «зачтено» считается, что результаты обучения по дисциплине (модулю) достигнуты и компетенции на этапе изучения дисциплины (модуля) сформированы.