Документ подписан простой электронной подписью

Информация о владельце: ФИО: Сыров Игорь Анатольевич

СТЕРЛИТАМАКСКИЙ ФИЛИАЛ

Должность: Дирекфе дерального госу дарственного БЮДЖЕТНОГО ОБРАЗОВАТЕЛЬНОГО Дата подписания: 25.11.2022 08:50:51 Упреж ления высшего образования

УЧРЕЖДЕНИЯ ВЫСШЕГО ОБРАЗОВАНИЯ

Уникальный программный ключ: b683afe664d7e9f64175886cf9626a19Y1PHMCKИЙ УНИВЕРСИТЕТ НАУКИ И ТЕХНОЛОГИЙ»

> Факультет Естественнонаучный Кафедра Общей и теоретической физики

Оценочные материалы по дисциплине (модулю)

дисциплина

Теоретическая механика; механика сплошных сред

Блок Б1, обязательная часть, Б1.О.18

цикл дисциплины и его часть (обязательная часть или часть, формируемая участниками образовательных отношений)

Специальность

21.05.05 Физические процессы горного или нефтегазового производства

наименование специальности

Программа

специализация N 2 "Физические процессы нефтегазового производства"

Форма обучения

Заочная

Для поступивших на обучение в 2022 г.

Разработчик (составитель)

к.ф.-м.н., доцент

Зеленова М. А.

ученая степень, должность, ФИО

1. Перечень компетенций, индикаторов достижения компетенций и описание показателей в	И
критериев оценивания результатов обучения по дисциплине (модулю)	3
2. Оценочные средства, необходимые для оценки результатов обучения по дисциплине (модулю)	8
3. Методические материалы, определяющие процедуры оценивания результатов обучения	
по дисциплине (модулю), описание шкал оценивания	.19

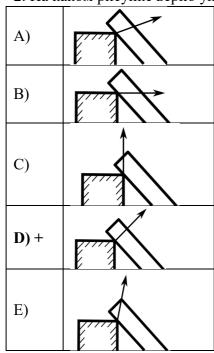
1. Перечень компетенций, индикаторов достижения компетенций и описание показателей и критериев оценивания результатов обучения по дисциплине (модулю)

Формируемая компетенция (с указанием кода)	Код и наименование индикатора достижения компетенции	Результаты обучения по дисциплине (модулю)	Показатели и критерии оценивания результатов обучения по дисциплине (модулю)				Вид оценочн ого средства
1	2	3			4	T	5
			неуд.	удовл.	хорошо	отлично	
ОПК-20.	ОПК-20.3.	Обучающийся	не владеет	с большими	не в полной мере	владеет	Тестовые
Способен	Применяет	должен знать:	способностью и	трудностями	владеет	способностью и	задания
понимать	методы	способы	заинтересованно	владеет	способностью и	заинтересованно	
принципы	информационн	описания	стью	способностью и	заинтересованно	стью	
работы	ых технологий	движения	использования в	заинтересованно	стью	использования в	
современных	для решения	сплошной среды;	практической	стью	использования в	практической	
информационн	задач	основные	деятельности	использования в	практической	деятельности	
ых технологий	профессиональ	характеристики	знаний	практической	деятельности	знаний	
и использовать	ной	напряженно-	закономерностей	деятельности	знаний	закономерностей	
их для	деятельности с	деформируемого	механики	знаний	закономерностей	механики	
решения задач	использование	состояния	сплошной среды,	закономерностей	механики	сплошной среды,	
профессионал	м полученных	сплошной среды.	самостоятельно	механики	сплошной среды,	самостоятельно	
ьной	знаний в		изучать и	сплошной среды,	самостоятельно	изучать и	
деятельности	области		понимать	самостоятельно	изучать и	понимать	
	фундаментальн		специальную	изучать и	понимать	специальную	
	ых и		(отраслевую)	понимать	специальную	(отраслевую)	
	прикладных		научную и	специальную	(отраслевую)	научную и	
	наук.		методическую	(отраслевую)	научную и	методическую	
			литературу,	научную и	методическую	литературу,	
			связанную с	методическую	литературу,	связанную с	
			проблемами	литературу,	связанную с	проблемами	
			механики	связанную с	проблемами	механики	

				T		
		сплошной среды	проблемами	механики	сплошной среды	
			механики	сплошной среды		
OHIC 20 2	0.7 v		сплошной среды			T
ОПК-20.2.	Обучающийся	не умеет строить	плохо умеет	умеет строить	умеет строить	Тестовые
Использует	должен уметь:	полные системы	строить полные	полные системы	полные системы	задания
современные	строить полные	уравнений,	системы	уравнений,	уравнений,	
информационн	системы	описывающих	уравнений,	описывающих	описывающих	
ые технологии	уравнений,	поведение	описывающих	поведение	поведение	
и программные	описывающих	конкретной	поведение	конкретной	конкретной	
продукты для	поведение	среды, ставить	конкретной	среды,	среды, ставить	
решения задач	конкретной	для них краевые	среды, ставить	затрудняется	для них краевые	
профессиональ	среды, ставить	и начальные	для них краевые	ставить для них	и начальные	
ной	для них краевые	условия,	и начальные	краевые и	условия,	
деятельности.	и начальные	выбирать метод	условия,	начальные	выбирать метод	
	условия,	решения	выбирать метод	условия,	решения	
	выбирать метод	поставленной	решения	выбирать метод	поставленной	
	решения	задачи	поставленной	решения	задачи	
	поставленной		задачи	поставленной		
	задачи.			задачи		
ОПК-20.1.	Обучающийся	не знает	поверхностно	не достаточно	знает	Тестовые
Выстраивает	должен владеть:	экспериментальн	знает	хорошо знает	экспериментальн	задания
профессиональ	навыками	ые основы	экспериментальн	экспериментальн	ые основы	
ную	работы со	теоретической	ые основы	ые основы	теоретической	
деятельность	справочной	механики и	теоретической	теоретической и	механики и	
опираясь на	литературой и	механики	механики и	прикладной	механики	
основы	другими	сплошных сред;	механики	механики и	сплошных сред;	
информационн	источниками	не знает	сплошных сред;	механики	знает основные	
ых технологий	информации;	основные	знаком с	сплошных сред;	положения	
и программные	навыками	положения	основными	не до конца	теоретической	
продукты.	оформления	теоретической	положениями	знает основные	механики и	
- ·	учебной	механики и	теоретической	положения	механики	

		документации.	механики	механики и	теоретической	сплошных сред	
			сплошных сред	механики	механики и	-	
			_	сплошных сред	механики		
				-	сплошных сред		
ОПК-5.	ОПК-5.1.	Обучающийся	не знает	имеет	Знает с	знает уравнения	Тестовые
Способен	Владеет	должен знать:	уравнения	представление о	пробелами	Гамильтона как	задания
работать с	современным	экспериментальн	Гамильтона как	уравнениях	уравнения	основное	
программным	программным	ые основы	основное	Гамильтона как	Гамильтона как	уравнение	
обеспечением	обеспечением	теоретической	уравнение	основное	основное	теоретической	
общего,	общего,	механики и	теоретической	уравнение	уравнение	механики и	
специального	специального	механики	механики и	теоретической	теоретической	свойства его	
назначения и	назначения и	сплошных сред;	свойства его	механики и	механики и	решений;	
моделировани	моделирования	основные	решений;	свойства его	свойства его	способы	
я горных и	горных и	положения	способы	решений;	решений;	описания	
геологических	геологических	теоретической	описания	способах	способы	движения	
объектов	объектов.	механики и	движения	описания	описания	сплошной среды;	
		механики	сплошной среды;	движения	движения	основные	
		сплошных сред;	основные	сплошной среды;	сплошной среды;	характеристики	
		уравнения	характеристики	основных	основные	напряженно-	
		Гамильтона как	напряженно-	характеристиках	характеристики	деформируемого	
		основное	деформируемого	напряженно-	напряженно-	состояния	
		уравнение	состояния	деформируемого	деформируемого	сплошной среды.	
		теоретической	сплошной среды.	состояния	состояния		
		механики и		сплошной среды.	сплошной среды.		
		свойства его					
		решений.					
	ОПК-5.2.	Обучающийся	не умеет	плохо умеет	с небольшими	умеет применять	Тестовые
	Использует	должен уметь:	применять	применять	затруднениями	уравнения	задания
	функционал и	различать круг	уравнения	уравнения	умеет применять	Гамильтона для	
	инструменты	задач, которые	Гамильтона для	Гамильтона для	уравнения	изучения	
	компьютерных	можно решить	изучения	изучения	Гамильтона для	свойств	

систем для	только методами	свойств	свойств	изучения	простейших	
решения	теоретической	простейших	простейших	свойств	микросистем;	
профессиональ	механики, от	микросистем; не	микросистем;	простейших	умеет различать	
ных задач.	задач, решаемых	умеют различать	весьма плохо	микросистем; не	круг задач,	
	на основе	круг задач,	умеют различать	в полной мере	которые можно	
	классической	которые можно	круг задач,	умеют различать	решить только	
	физики;	решить только	которые можно	круг задач,	методами	
	применять	методами	решить только	которые можно	теоретической	
	уравнения	теоретической	методами	решить только	механики, от	
	Гамильтона для	механики, от	теоретической	методами	задач, решаемых	
	изучения	задач, решаемых	механики, от	теоретической	на основе	
	свойств	на основе	задач, решаемых	механики, от	классической	
	простейших	классической	на основе	задач, решаемых	физики	
	микросистем.	физики	классической	на основе		
			физики	классической		
				физики		
ОПК-5.3.	Обучающийся	не владеет	частично владеет	владеет не в	владеет	Тестовые
Использует в	должен владеть:	навыками	навыками	полной мере	навыками	задания
профессиональ	навыками	работы со	работы со	навыками	работы со	
ной	составления	справочной	справочной	работы со	справочной	
деятельности	математических	литературой и	литературой и	справочной	литературой и	
программные	моделей задач	другими	другими	литературой и	другими	
обеспечения	теоретической	источниками	источниками	другими	источниками	
общего,	механики;	информации;	информации;	источниками	информации;	
специального	способностью и	навыками	навыками	информации;	навыками	
назначения и	заинтересованно	оформления	оформления	навыками	оформления	
моделирования	стью	учебной	учебной	оформления	учебной	
горных и	использования в	документации;	документации;	учебной	документации;	
геологических	практической	не владеют	частично	документации;	владеет	
объектов.	деятельности	навыками	владеют	не до конца	навыками	
	знаний	составления	навыками	владеют	составления	
	закономерностей	математических	составления	навыками	математических	

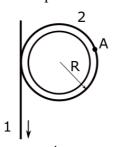

механики сплошной среды, самостоятельно изучать и понимать специальную (отраслевую) научную и	моделей задач теоретической и прикладной механики оформления учебной документации	математических моделей задач теоретической и прикладной механики, навыками оформления учебной	составления математических моделей задач теоретической и прикладной механики, навыками оформления	моделей задач теоретической механики	
методическую литературу, связанную с		документации	учебной документации		
проблемами механики сплошной среды.					

2. Оценочные средства, необходимые для оценки результатов обучения по дисциплине (модулю)

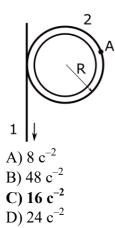
Перечень заданий

Перечень вопросов для оценки уровня сформированности компетенции ОПК-20 по индикатору 20.1:

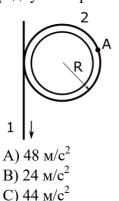
- 1. Сила, с которой связь действует на рассматриваемую точку, систему или твердое тело, называется
 - А) реакцией связи
 - В) силой упругости
 - С) силой тяжести
 - D) силой трения
 - 2. На каком рисунке верно указана сила, действующая со стороны опоры на бурок


3. Какое из представленных выражений соответствует условию равновесия

A)	$\overline{F} = \sum_{i=1}^{N} \overline{F}_{i}$
B)	$\cos(\overline{F}, y) = \frac{F_y}{F}$
C) +	$\sum_{i=1}^{N} \overline{F_i} = 0$
D)	$\cos(\overline{F}, z) = \cos \alpha$


4. Дано уравнение равноускоренного движения $S = 5 + 3t + 2t^2$ (м). Чему равна скорость движения тела в начальный момент времени?

A) 3


- B) 5
- C) 2
- D) 4
- 5. Дано уравнение равноускоренного движения $S = 5 + 3t + 2t^2$ (м). Чему равно ускорение тела в начальный момент времени?
 - A) 5
 - B) 3
 - C) 4
 - D) 2
- 6. Точка движется по дуге окружности радиуса R=2 м по закону $S=2\sin\left(\frac{\pi}{6}t\right)$ (м). Чему равна скорость движения тела в момент времени t=2 с?
 - A) -0.52 m/c
 - B) 1.05 m/c
 - C) 1.73 m/c
 - D) 0.52 m/c
- 7. Точка движется по дуге окружности радиуса R=2 м по закону $S=2\sin\left(\frac{\pi}{6}t\right)$ (м). Чему равно полное ускорение тела в момент времени t=2 с?
 - A) 0.49 m/c^2
 - B) -0.48 m/c^2
 - C) 0.48 m/c^2
 - D) -0.86 m/c^2
- 8. Рейка 1 движется по закону $S = 4t^2$ (м), направление движения показано на рисунке. Чему равна угловая скорость колеса 2 с закреплённой осью, радиус которого 0.5 м, в момент времени 3 с?

- A) $32 c^{-1}$
- B) $75 c^{-1}$
- C) $24 c^{-1}$
- D) $48 c^{-1}$
- 9. Рейка 1 движется по закону $S=4t^2$ (м), направление движения показано на рисунке. Чему равно угловое ускорение колеса 2 с закреплённой осью, радиус которого 0.5 м, в момент времени 3 с?

10. Рейка 1 движется по закону $S = 4t^2$ (м), направление движения показано на рисунке. Чему равно ускорение точки A, расположенной на ободе колеса, с закреплённой осью, радиус которого 0.5 м, в момент времени 3 с?

Перечень вопросов для оценки уровня сформированности компетенции ОПК-5 по индикатору 5.1:

1. Выберите из представленных формул те, которые соответствуют основному закону динамики движения точки вдоль оси Ох

$$1.\frac{d^2x}{dt^2} = \frac{F_x}{m}$$

D) 25 m/c^2

$$2. F_x = ma_z$$

$$3. \ m\ddot{x} = F_z$$

$$4. \frac{d^2S}{dx^2} = \frac{F_x}{m}$$

$$5. \ \ddot{x} = mg$$

- 2. Сформулируйте третий закон Ньютона
- А) Силы взаимодействия двух материальных точек (действие и противодействие) равны по величине, направлены в противоположные стороны и имеют общую линию действия.
- В) Силы взаимодействия двух материальных точек (действие и противодействие) равны по величине, направлены в одну сторону и имеют общую линию действия.

- С) Силы взаимодействия двух материальных точек (действие и противодействие) равны по величине, направлены перпендикулярно друг к другу и приложены к одной точке.
- D) Силы взаимодействия двух материальных точек (действие и противодействие) равны по величине, направлены в противоположные стороны и имеют параллельные линии действия.
- 3. Как называется добавочное ускорение, которое появляется в случае, если поворотное переносное движение не является поступательным

А) кориолисово

- В) центростремительное
- С) центробежное
- D) переносное
- 4. Выберите верное утверждение
- С) Проекции скоростей двух точек твердого тела на прямую, соединяющую эти точки, никак не взаимосвязаны между собой
- В) Проекции скоростей двух точек твердого тела на прямую, соединяющую эти точки, относятся друг к другу как радиус-векторы этих точек
- С) Проекции скоростей двух точек твердого тела на прямую, соединяющую эти точки, равны между собой
- D) Проекции скоростей двух точек твердого тела на прямую, соединяющую эти точки, равны по величине и имеют разные знаки
 - 5. Укажите определение динамического коэффициента вязкости:
- А) касательное напряжение вязкости, необходимое для поддержания разности скоростей, равной единице, между двумя параллельными слоями жидкости, разделенными расстоянием, равным единице
- В) частное от деления кинематического коэффициента вязкости на плотность жидкости
- С) касательное напряжение вязкости, необходимое для поддержания разности скоростей, равной нулю, между двумя параллельными слоями жидкости
 - 6. Укажите определение кинематического коэффициента вязкости:
- А) частное от деления динамического коэффициента вязкости на коэффициент трения
- В) частное от деления динамического коэффициента вязкости на плотность жидкости
 - С) частное от деления коэффициента трения на плотность жидкости
- 7. Какой коэффициент является касательным напряжением вязкости, необходимым для поддержания разности скоростей, равной единице, между двумя параллельными слоями жидкости, разделенными расстоянием, равным единице?
 - А) коэффициент трения
 - В) динамический коэффициент вязкости
 - С) кинематический коэффициент вязкости

- 8. Какой коэффициент является частным от деления динамического коэффициента вязкости на плотность жидкости?
 - А) кинематический коэффициент вязкости
 - В) коэффициент трения
 - С) коэффициент теплопроводности
 - 9. Движение каких жидкостей описывают уравнения Навье-Стокса?
 - А) неньютоновская жидкость
 - В) ньютоновская жидкость
 - С) ньютоновская и неньютоновская жидкость
- 10. Какой закон показывает, что тензор напряжений является линейной функцией тензора скоростей деформаций элементарного объёма жидкости?
 - А) закон Гука
 - В) обобщенный закон Ньютона
 - С) закон Фурье
 - D) закон Дарси

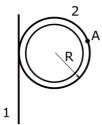
Перечень вопросов для оценки уровня сформированности компетенции ОПК-20 по индикатору 20.2:

- 1. Кислород массой 1,6 кг и вода массой 0,9 кг находятся в запаянном сосуде объема 1 м3. При какой температуре вся вода превращается в пар? Давление в сосуде при этом 640 кПа
 - A) 300 °C
 - B) 500 °C
 - C) 650 °C
 - D) 1500 °C
- 2. Каковы удельный объем и плотность углекислого газа в баллоне углекислого огнетушителя емкостью 8 л, если масса заряда углекислого газа 4 кг? Ответ дайте в СИ.
 - A) $2 \cdot 10^3$; $5 \cdot 10^{-3}$;
 - B) $5 \cdot 10^3$; $2 \cdot 10^{-6}$;
 - C) $0.5 \cdot 10^3$; $2 \cdot 10^{-3}$;
 - D) 0,5; 2;
- 3. Какой объем в ${\rm M}^3$ занимает 1 кмоль газа при давлении 2 МПа и температуре 100 °C?
 - A) 0.5
 - B) 1,0
 - C) 1,5
 - D) 2,0
- 4. Определить скорость потока воды в трубопроводе в м/с. Расход воды составляет 6 м^3 /час. Диаметр трубопровода $0{,}012\text{м}$.
 - A) 15
 - B) 18
 - C) 21

- D) 19 5. На какую высоту в м поднимется жидкость плотностью 900 кг/м³ в трубке, если давление подачи $12 \cdot 10^5$ Па? A) 1,1 B) 1,3 C) 1,5D) 2,1
- 6. Что покажет динамометр в H, если стальной цилиндр массой 500 г, подвешенный к нему, погрузить в воду на 3/4? A) 5,0

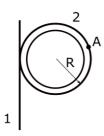
 - B) 1,4
 - C) 4,5
 - D) 2,1
- 7. Рассчитайте объем полости в стальной заготовке массой 390 г, если она полностью погружена в воду и висит на пружине динамометра, который показывает 3,35 H?
 - A) $5 \cdot 10^{-3}$
 - B) $5 \cdot 10^{-2}$
 - C) $3 \cdot 10^{-3}$
 - D) $3 \cdot 10^{-2}$
- 8. Найдите плотность в кг/м³ материала шарика диаметра 2 мм, который равномерно падает в касторовом масле со скоростью 0.5 см/с. Динамическая вязкость масла 2 Па-с
 - A) 5500
 - B) 6400
 - C) 2700
 - D) 7100
- 9. Найдите радиус пробкового шарика в мм, который равномерно всплывает в керосине со скоростью 0.5 м/с. Динамическая вязкость керосина имеет значение 0,00293 Па·с. Плотность керосина 780 кг/м3. Плотность пробки 120 кг/м³.
 - A) 1,0
 - B) 0,1
 - C) 2,0
 - D) 2,1
- 10. Принимая критическое значение числа Рейнольдса 3000 3200, определите режим течения воды, которая движется в трубопроводе диаметром 0,012 м с расходом 9 M^3/vac .
 - А) ламинарный
 - В) турбулентный
 - С) переходной

Перечень вопросов для оценки уровня сформированности компетенции ОПК-5 по индикатору 5.2:


1.	Принимая	критическое	значение	числа	Рейнольдса	3000,	опр	еделите
максималі	ьный расход	$\mathbf{B} \mathbf{M}^3/\mathbf{c}$ кероси	ина в трубо	проводе	диаметром	23 см,	при к	сотором
движение	остается лам	инарным.						

- A) 0,8
- B) 0,6
- C) 1,2
- D) 1,4
- 2. Под давлением 97,3 кПа находится водород. При какой температуре его плотность будет $0.081\ \mathrm{kr}\ /\mathrm{m}3?$
 - A) 0 °C
 - B) 10 °C
 - C) 15 °C
 - D) 20 °C
- 3. Найдите радиус капли, при разделении которой на две одинаковые капли необходимо совершить работу A=14,7 мкДж.
 - A) 1 mm
 - В) 2 мм
 - C) 3 mm
 - D) 5,3 MM
- 4. Каково поверхностное натяжение мыльного раствора, если при для увеличения в два раза объема мыльного пузыря радиусом 1 мм против сил поверхностного натяжения совершена работа 63,4 мкДж
 - A) 0.043 H/m
 - B) 0.43 H/m
 - C) 0.053 H/M
 - D) 0.53 H/M
- 5. Определите диаметр капилляра, при котором бензол поднимется в нем на 13,9 мм. Смачивание считать полным.
 - A) 1 mm
 - В) 1,2 мм
 - C) 3 mm
 - D) 0,3 mm
- 6. При 0°C плотность ртути 13600 кг/м³, коэффициент ее объемного расширения $1,85\cdot 10^{-4}$. При какой температуре ее плотность будет 12900 кг/м³?
 - A) 200 0C
 - B) 250 0C
 - C) 300 0C
 - D) 350 0C

- 7. Сжимаемость воды $4.8 \cdot 10^{-10}~\Pi a^{-1}$. На какой глубине плотность морской воды будет $1055~{\rm kг/m}^3$, если на поверхности она равна $1030~{\rm kr/m}^3$.
 - А) 2 км
 - В) 3 км
 - С) 4 км
 - D) 5 км
 - 8. Какое давление будет оказывать вода на дно пруда глубиной 100 м?
 - A) $10^5 \, \Pi a$
 - B) $10^6 \, \Pi a$
 - C) 10^{-5} Па
 - D) $10^{3} \Pi a$
 - 9. Какое давление будет испытывать водолаз на дне пруда глубиной 100 м?
 - A) $10^{10} \, \Pi a$
 - B) $11 \cdot 10^6$ Па
 - C) 1.10^6 Па
 - D) $11 \cdot 10^5$ Πa
- 10. При нормальных условиях коэффициент объемного расширения бензола $24 \cdot 10^{-3}$ K $^{-1}$, а его сжимаемость $9 \cdot 10^{-11}$ Па $^{-1}$. На сколько нужно нагреть бензол, чтобы при увеличении внешнего давления на 1380000 Па его объем не изменился?
 - A) 1 K
 - B) 2 K
 - C) 3 K
 - D) 4 K


Перечень вопросов для оценки уровня сформированности компетенции ОПК-20 по индикатору 20.3:

1. Колесо 2, радиусом 0.5 м, вращается вокруг оси 1 по закону $\varphi = 4t^2 - t$. По ободу колеса движется точка A по закону $S = 5t^2 + t$ (м). Чему равна относительная скорость точки A, в момент времени 2 с? Ответ округлите до целых.

Ответ: 21

2. Колесо 2, радиусом 0.5 м, вращается вокруг оси 1 по закону $\varphi = 4t^2 - t$. По ободу колеса движется точка A по закону $S = 5t^2 + t$ (м). Чему равна переносная скорость точки A, в момент времени 2 с? Ответ округлите до целых.

Ответ: 15

3. Тело массой 5 кг движется по наклонной плоскости с углом наклона 30 градусов. Чему равна проекция силы тяжести на ось Ох, если ось направлена вдоль наклонной плоскости в сторону движения груза (Ответ округлите до целых и выразите в Ньютонах. Единицу измерения не писать!). $g = 10 \text{ m/c}^2$.

Ответ: 25

4. Тело массой 5 кг движется по наклонной плоскости с углом наклона 30 градусов. Чему равна проекция силы тяжести на ось Оу, если ось направлена вдоль внешней нормали к наклонной плоскости (Ответ округлите до целых и выразите в Ньютонах. Единицу измерения не писать!). $g = 10 \text{ m/c}^2$.

Ответ: 43

5. В каком случае проекция силы на ось равна нулю?

Ответ: если направление силы перпендикулярно к оси.

6. Какое количество независимых координат необходимо задать для однозначного определения положения материальной точки в пространстве?

Ответ: 3

7. Для системы N материальных точек в пространстве, на которую наложено \square голономных связей, число степеней свободы s равно:

Otbet: s = 3N - n.

8. Число степеней свободы твердого тела равно:

Ответ: 6

9. Число степеней свободы тонкого стержня равно:

OTRET: 5

10. Число степеней свободы N -атомной молекулы равно:

Ответ: 3N

Перечень вопросов для оценки уровня сформированности компетенции ОПК-5 по индикатору 5.3:

1. При нормальных условиях коэффициент объемного расширения бензола $24\cdot 10^{-3}$ K⁻¹, а его сжимаемость $9\cdot 10^{-11}$ Па⁻¹. На сколько нужно увеличить давление на бензол, чтобы при увеличении его температуры на 1 K его объем не изменился? (Ответ дайте в кПа, с точностью до целых)

Ответ: 1380.

2. Найти скорость v течения углекислого газа по трубе, если известно, что за время t=30 мин через поперечное сечение трубы протекает масса газа m=0,51 кг. Плотность газа $\rho=7,5$ кг/м³. (Ответ дайте в м/с, с точностью до сотых)

Ответ: 0,12.

3. Сосуд, наполненный водой, сообщается с атмосферой через стеклянную трубку, закрепленную в горлышке сосуда (рис. 5). Кран K находится на расстоянии h_2 =2 см от дна сосуда. Найти скорость v вытекания воды из крана случае, если расстояние между нижним концом трубки и дном сосуда, h_1 = 10 см. (Ответ дайте в м/с, с точностью до сотых)

Ответ: 1,25.

4. Какое давление P создает компрессор в краскопульте, если струя жидкой краски вытекает из него со скоростью v=25 м/с? Плотность краски $\rho=0.8\cdot10^3$ кг/м³. (Ответ дайте в МПа, с точностью до сотых)

Ответ: 0,25.

5. Как изменяется динамическая вязкость жидкостей (уменьшая/увеличивается/не изменяется) при увеличении температуры?

Ответ: уменьшается.

6. Как изменяется динамическая вязкость жидкостей (уменьшая/увеличивается/не изменяется) при уменьшении температуры?

Ответ: увеличивается.

7. Как изменяется динамическая вязкость жидкостей (уменьшая/увеличивается/не изменяется) при увеличении давления?

Ответ: увеличивается.

8. Как изменяется динамическая вязкость жидкостей (уменьшая/увеличивается/не изменяется) при уменьшении давления?

Ответ: уменьшается.

9. Функция Лагранжа L в СИ имеет размерность ...

Ответ: Дж (энергии).

10. Механическая система состоит из двух материальных точек, связанных невесомым нерастяжимым стержнем. Какое количество уравнений Лагранжа необходимо для описания движения системы?

Ответ: 5.

Перечень вопросов к экзамену

ВАРИАЦИОННЫЙ ПРИНЦИП В МЕХАНИКЕ

- 1. Уравнения движения механической системы
- 2. Основная задача механики. Принцип причинности в классической механике
- 3. Работа силы и потенциальная энергия частицы во внешнем силовом поле
- 4. Связи. Уравнения движения в ПДСК
- 5. Принцип наименьшего действия (принцип Гамильтона)
- 6. Обобщённые координаты и обобщённые импульсы
- 7. Функция Лагранжа и энергия
- 8. Примеры на построение функции Лагранжа

ЗАКОНЫ СОХРАНЕНИЯ

- 9. Первые интегралы уравнений движения и законы сохранения
- 10. Зкон сохранения механической энергии
- 11. Закон сохранения импульса для замкнутой механической системы
- 12. Закон сохранения момента импульса для замкнутой механической системы НЕКОТОРЫЕ ЗАДАЧИ МЕХАНИКИ
 - 13. Одномерное движение
 - 14. Задача двух тел
 - 15. Движение частицы в центрально-симметричном поле
 - 16. Движение частицы в кулоновом поле
 - 17. Столкновение частиц
 - 18. Рассеяние частии

МАЛЫЕ КОЛЕБАНИЯ

- 19. Свободные колебания
- 20. Затухающие колебания
- 21. Вынужденные колебания
- 22. Колебания системы со многими степенями свободы
- 23. Связанные маятники

МЕХАНИКА ТВЕРДОГО ТЕЛА

- 24. Угловая скорость
- 25. Тензор инерции
- 26. Кинематика вращающего движения твердого тела
- 27. Момент импульса твёрдого тела
- 28. Уравнения движения твёрдого тела
- 29. Уравнения Эйлера
- 30. Движение в неинерциальной системе отсчёта

КАНОНИЧЕСКИЕ УРАВНЕНИЯ

- 31. Переменные Гамильтона. Функция Гамильтона. Канонические уравнения Гамильтона.
- 22. Преобразование уравнений Лагранжа в уравнения Гамильтона. Функция Гамильтона для консервативной системы.
 - 33. Первые интегралы гамильтоновых систем.
 - 34. Скобки Пуассона. Теорема Якоби-Пуассона.
 - 35. Циклические первые интегралы.
- 36. Понижение порядка уравнений Гамильтона в случае циклических координат и для обобщенно консервативных систем.
- 37. Преобразование лагранжиана при замене координат и времени. Теорема Эмми Нетер.
- 38. Действие по Гамильтону. Вариация действия по Гамильтону. Вариационный принцип Гамильтона.
- 39. Свободное каноническое преобразование и его производящая функция. Правила преобразования гамильтонианов при канонических преобразованиях.
 - 40. Уравнения Гамильтона Якоби
 - 41.Случаи разделения переменных в уравнении Гамильтона-Якоби.

МЕХАНИКА СПЛОШНЫХ СРЕД

- 42. Предмет механики сплошных сред: основные гипотезы и законы
- 43. Элементы векторного и тензорного исчисления (понятие криволинейной системы координат и криволинейной ортогональной системы координат (декартовой,

цилиндрической и сферической); локальный и взаимный базисы, метрический тензор, ковариантные, контравариантные и физические компоненты вектора, символы Кристоффеля первого и второго рода, ковариантная производная компонент вектора, векторные операции в криволинейной ортогональной системе координат (grad, div и rot), символ Леви-Чивита, понятие тензора нулевого, первого, второго и n-го ранга, симметричные и антисимметричные тензоры второго ранга, операции с тензорами)

- 44. Кинематика деформируемой среды (Лагранжево и Эйлерово описания движения сплошной среды. Уравнение неразрывности в переменных Эйлера и Лагранжа. Тензор деформаций. Тензор скоростей деформации. Теорема Коши-Гельмгольца)
- 45. Массовые и поверхностные силы в механики сплошных сред. Тензор напряжений. Модели сплошных сред
- 46. Общее уравнение движения сплошной среды. Замкнутая система уравнений движения сплошной среды
- 47. Изэнтропическое движение. Уравнение Эйлера. Граничные и начальные условия. Поток энергии и поток импульса
 - 48. Уравнение Бернулли. Линии тока и траектории. Трубки тока
- 49. Циркуляция скорости по замкнутому жидкому контуру. Теорема Томсона о сохранении циркуляции. Примеры вихревых движений
- 50. Потенциальное течение. Парадокс Даламбера-Эйлера и его устранение. Идеальная несжимаемая жидкость. Функция тока. Примеры решения задач
- 51. Замкнутая система уравнений движения вязкой жидкости. Уравнение Навье-Стокса. Граничные и начальные условия. Вихревое движение вязкой жидкости
- 53. Характеристика двух режимов течения. Определение турбулентности. Потеря устойчивости и переход от ламинарного течения к турбулентному. Развитая и локальная турбулентность. Уравнение Рейнольдса осредненное уравнение турбулентного движения. Понятие пограничного слоя

3. Методические материалы, определяющие процедуры оценивания результатов обучения по дисциплине (модулю), описание шкал оценивания

Виды учебной	Балл за	Число заданий	Баллы			
деятельности студентов	конкретное задание	за семестр	Минимальный	Максимальный		
Модуль 1						
Текущ	ий контроль		0	20		
1. Тестирование	10	2	0	20		
Рубежн	ый контроль			15		
1. Тестирование	15	1	0	15		
		итого	0	35		
		Модуль 2				
Текущ	0	20				
1. Тестирование	10	2	0	20		

Рубежн	ый контроль		0	15	
1. Тестирование	15	1	0	15	
		итого	0	35	
Поощрител	іьные баллы				
1. Выполнение дополнительных заданий (из перечня заданий для практических работ)	2	5	0	10	
Посещаемость	(баллы вычитак	отся из общей сум	мы набранных балл	пов)	
Посещение лекционных занят	ий		0	-6	
Посещение практических заня	0	-10			
Итоговый контроль					
Э	0	30			
		итого	0	110	

Результаты обучения по дисциплине (модулю) у обучающихся оцениваются по итогам текущего контроля количественной оценкой, выраженной в рейтинговых баллах. Оценке подлежит каждое контрольное мероприятие.

При оценивании сформированности компетенций применяется четырехуровневая шкала «неудовлетворительно», «удовлетворительно», «хорошо», «отлично».

Максимальный балл по каждому виду оценочного средства определяется в рейтинг-плане и выражает полное (100%) освоение компетенции.

Уровень сформированности компетенции «хорошо» устанавливается в случае, когда объем выполненных заданий соответствующего оценочного средства составляет 80-100%; «удовлетворительно» — выполнено 40-80%; «неудовлетворительно» — выполнено 0-40%

Рейтинговый балл за выполнение части или полного объема заданий соответствующего оценочного средства выставляется по формуле:

Рейтинговый балл = k × Максимальный балл,

где k=0,2 при уровне освоения «неудовлетворительно», k=0,4 при уровне освоения «удовлетворительно», k=0,8 при уровне освоения «хорошо» и k=1 при уровне освоения «отлично».

Оценка на этапе промежуточной аттестации выставляется согласно Положению о модульно-рейтинговой системе обучения и оценки успеваемости студентов УУНиТ: На экзамене выставляется оценка:

- отлично при накоплении от 80 до 110 рейтинговых баллов (включая 10 поощрительных баллов).
- хорошо при накоплении от 60 до 79 рейтинговых баллов,
- удовлетворительно при накоплении от 45 до 59 рейтинговых баллов,
- неудовлетворительно при накоплении менее 45 рейтинговых баллов.

При получении на экзамене оценок «отлично», «хорошо», «удовлетворительно», на зачёте оценки «зачтено» считается, что результаты обучения по дисциплине (модулю) достигнуты и компетенции на этапе изучения дисциплины (модуля) сформированы.